Water Slug Detachment in Two-phase Hydrophobic Microchannel Flows
نویسندگان
چکیده
In this paper we present a first order study of liquid water detachment and entrainment into air flows in hydrophobic microchannels. A silicon based microfabricated test structure was used for this purpose. It consists of a 500 μm wide by 45 μm deep U-shaped channel 23 mm in length through which air is flown. The structures are treated with a Molecular Vapor Deposition (MVD) process that renders them hydrophobic with a nominal contact angle of 108° (in situ contact angles inside the channels are measured directly during testing). Liquid water is injected through a single side slot located two-thirds of the way downstream from the air channel inlet. The side slot extends the whole depth of the air channel while its width is varied from sample to sample. Visualization of the water slugs that form as water is injected into the air channel was performed. Slug dimensions at detachment are correlated against superficial gas velocity. Proper dimensionless parameters are postulated and examined to compare hydrodynamics forces against surface tension. It is found that for Re below 200 slug detachment is dominated by pressure gradient drag arising from confinement of a viscous flow in the channel. On the other hand, for Re above 200 the predominant drag is inertial in nature with stagnation of the air due to flow obstruction by the slugs.
منابع مشابه
Numerical Investigations of Two-phase Flows through Enhanced Microchannels
Microfluidic devices are quite important for process industries, as these devices can intensify heat and mass transfer in two-phase reaction systems. Two-phase reaction systems, such as gas-liquid and liquid-liquid reactions with certain limitations have already been carried out in microfluidic systems by a few authors. However, these concepts are still under development and a detailed understa...
متن کاملThe Indication of Two-Phase Flow Pattern and Slug Characteristics in a Pipeline Using CFD Method
Multiphase flows are commonly encountered in oil and gas industries. The transport of multiphase flow causes the formation of slug, the increase of pressure drop and the possibility of phase changes therefore, a set of simulation runs was performed to predict flow regimes in a horizontal pipeline, and the results were compared with the Baker chart. The effects of small downward inclinations of ...
متن کاملNumerical investigation of upward air-water annular, slug and bubbly flow regimes
In this paper, numerical investigation of upward two phase flow of air-water has been studied. Different conditions of flow regimes including annular, wispy annular, slug, churn and bubbly are simulated based on Hewitt and Roberts map, and a good agreement between the experimental data of the map and the numerical simulation has been observed. Accordingly, a proper CFD model in CFD software of ...
متن کاملCharacterization of Bubbly and Slug Flow Regimes Generated in a Minichannel in Microgravity Conditions
Abstract We performed a characterization of the bubbly and slug flow regimes in minichannels in conditions relevant to microgravity. Two-phase flows were generated on ground by means of a T-junction device (1 mm i.d.), whose operation is independent to changes in gravity level [1]. Air and water were injected at several superficial velocities ranging from 0 up to 2 m/s. The generation and detac...
متن کاملProbabilistic Neural Network prediction of liquid- liquid two phase flows in a circular microchannel
The present work proposes towards flow pattern prediction in a liquidliquid microchannel flow through a circular channel. Mass transfer in a microchannel mainly depends on the flow regime inside the channel. The liquid-liquid two phase flow regime in a microchannel depends on the flow velocity and the junction characteristics. Hence, the prediction of patterns has a superior role for the charac...
متن کامل